Module tripleblind.tasks
These Tasks represent targeted jobs and preprocessing for specific things. The general hierarchy is:
TrainingTask
TrainTabularNet
TrainImageNet
InferenceTask
InferTabularNet
InferImage
Classes
class TrainTabularNet (job_name: str, network: Asset, columns: int, datasets: List[Asset], epochs: int, inference_type: str, loss_function: str, optimizer: str, optimizer_params: dict)-
A single operation involving an algorithm or training protocol, some form of data (either a data asset or an input file) and any parameters used by the algorithm/protocol.
Ancestors
Inherited members
TrainingTask:activecancelcreateddatasetfindfind_allget_status_streamhandle_keyboard_interruptidjob_namekillmetadatamodel_statusoperationownerpreprocessorstatussubmittrained_networktraining_modelupdate_router_statusupdate_statuswait_for_completionwaiting_onwaiting_on_permissionwaiting_on_queue
class TrainingTask (job_name: str, training_model: Asset, dataset: List[Asset], params: dict)-
A single operation involving an algorithm or training protocol, some form of data (either a data asset or an input file) and any parameters used by the algorithm/protocol.
Ancestors
Subclasses
Instance variables
var trained_network : Asset-
After training, the Asset representing the trained neural network
var training_model : Asset-
After training this holds the trained neural network
Methods
def train(self, quiet: bool | None = False) -> bool
Inherited members