Module tripleblind.regression_asset
Classes
class PSIVerticalRegressionModel (uuid: UUID)
-
PSIVerticalRegressionModel(uuid: 'UUID', _accesspoint_filename: 'Optional[str]' = None, _filename: 'Optional[str]' = None, _hash: 'Optional[str]' = None, _name: 'Optional[str]' = None, _namespace: 'Optional[UUID]' = None, _metadata: 'Optional[dict]' = None, _activate_date: 'Optional[dt.datetime]' = None, _deactivate_date: 'Optional[dt.datetime]' = None, _desc: 'Optional[str]' = None, _team: 'Optional[str]' = None, _team_id: 'Optional[str]' = None, _is_discoverable: 'bool' = False, _k_grouping: 'Optional[int]' = None)
Ancestors
Static methods
def train(datasets: Asset | List[Asset], match_column: str | List[str], regression_type: tb_shared_objects.enums.RegressionType, target: str, preprocessor: preprocessor.tabular.TabularPreprocessor | List[preprocessor.tabular.TabularPreprocessor] | preprocessor.tabular.TabularPreprocessorBuilder | List[preprocessor.tabular.TabularPreprocessorBuilder] | None = None, learning_rate: float | None = 0.1, job_name: str | None = None, session: Session | None = None) -> Asset
-
Create a PSIVerticalRegression model trained on the provided dataset(s).
Args
datasets
:Union[Asset, List[Asset]]
- A dataset Asset (or a list of Assets) to be used in the psi prior to the regression.
match_column
:Union[str, List[str]]
- Name of the column to match. If not the same in all datasets, a list of the matching column names, starting with the initiator asset and then listing a name in each dataset.
regression_type
:RegressionType
- Type of regression to be run. Either tb.RegressionType.LINEAR or tb.RegressionType.LOGISTIC
target
:str
- The name of the target column for the training
preprocessor
:Union[TabularPreprocessor, List[TabularPreprocessor]]
, optional- The preprocessor(s) to use against the datasets. When no preprocessor is specified, the default preprocessor selects all columns.
learning_rate
:float
, optional- Learning rate for training.
job_name
:str
, optional- Reference name for this process. This name will appear in the Access Request, Process History, and Audit Reports.
session
:Session
, optional- A connection session. If not specified, the default session is used.
Raises
TripleblindTrainingError
- Model training failed
Returns
Regression Asset
- The trained model, or None if training fails.
Inherited members
class Regression (uuid: UUID)
-
An abstract Regression class for representing a regression model.
Ancestors
Subclasses
Static methods
def cast(asset: Asset) -> Regression
-
Convert a generic Asset into a Regression
This should only be used on an asset known to be a Regression asset, no validation occurs during the cast.
Args
asset
:Asset
- A generic Asset
Returns
Regression
- A Regression asset object
def find(search: str | re.Pattern | None, namespace: uuid.UUID | None = None, owned: bool | None = False, owned_by: int | None = None, session: Session | None = None, exact_match: bool | None = True) -> Regression | None
-
Search the Router index for an asset matching the given search
Args
search
:str
orre.Pattern
, optional- The search pattern applied to asset names. A simple string will be used as a substring search if exact_match is False, otherwise it will only return exact matches.
namespace
:UUID
, optional- The UUID of the user to which this asset belongs. None indicates any user, NAMESPACE_DEFAULT_USER indicates the current API user.
owned
:bool
, optional- Only return owned assets (either personally or by the current user's team)
owned_by
:int
, optional- Only return owned assets owned by the given team ID
session
:Session
, optional- A connection session. If not specified, the default session is used.
exact_match
:bool
, optional- When the 'search' is a string, setting this to True will perform an exact match. Ignored for regex patterns, defaults to True.
Raises
TripleblindAssetError
- Thrown when multiple assets are found which match the search.
Returns
Regression
- A single Regression asset, or None if no match found
Inherited members
class RegressionModel (uuid: UUID)
-
RegressionModel(uuid: 'UUID', _accesspoint_filename: 'Optional[str]' = None, _filename: 'Optional[str]' = None, _hash: 'Optional[str]' = None, _name: 'Optional[str]' = None, _namespace: 'Optional[UUID]' = None, _metadata: 'Optional[dict]' = None, _activate_date: 'Optional[dt.datetime]' = None, _deactivate_date: 'Optional[dt.datetime]' = None, _desc: 'Optional[str]' = None, _team: 'Optional[str]' = None, _team_id: 'Optional[str]' = None, _is_discoverable: 'bool' = False, _k_grouping: 'Optional[int]' = None)
Ancestors
Static methods
def train(datasets: Asset | List[Asset], regression_type: tb_shared_objects.enums.RegressionType, target: str, model_params: dict | None = None, preprocessor: preprocessor.tabular.TabularPreprocessor | List[preprocessor.tabular.TabularPreprocessor] | preprocessor.tabular.TabularPreprocessorBuilder | List[preprocessor.tabular.TabularPreprocessorBuilder] | None = None, job_name: str | None = None, test_size: float | None = 0.0, data_scale_factor: int | None = 1, weight_scale_factor: int | None = 1, minimum_data_value: int | None = 1, minimum_weight_value: int | None = 1, session: Session | None = None) -> Asset
-
Create a Regression model trained on the provided horizontal dataset(s).
Args
datasets
:Union[Asset, List[Asset]]
- A dataset Asset (or a list of Assets) used to train the regression.
regression_type
:RegressionType
- Type of regression to be run. One of: tb.RegressionType.LINEAR, LOGISTIC, LASSO, RIDGE
target
:str
- The name of the target column for the training
model_params
:dict
, optional-
Model parameters specific to regression_type used. Available regression algorithms with usable params:
LinearRegression - https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
LogisticRegression - https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
Lasso - https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
Ridge - https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
preprocessor
:Union[TabularPreprocessor, List[TabularPreprocessor]]
, optional- The preprocessor(s) to use against the datasets. When no preprocessor is specified, the default preprocessor selects all columns.
job_name
:str
, optional- Reference name for this process. This name will appear in the Access Request, Process History, and Audit Reports.
test_size
:float
, optional- test size used for training
data_scale_factor
:int
, optional- data scale factor used for training
weight_scale_factor
:int
, optional- weight scale factor used for training
minimum_data_value
:int
, optional- minimum data value used for training
minimum_weight_value
:int
, optional- minimum weight value used for training
session
:Session
, optional- A connection session. If not specified, the default session is used.
Raises
TripleblindTrainingError
- Model training failed
Returns
Regression Asset
- The trained model.
Inherited members